Asymmetric Binary-Acid Catalysis with Chiral Phosphoric Acid and MgF₂: Catalytic Enantioselective Friedel—Crafts Reactions of β,γ -Unsaturated α -Ketoesters

Jian Lv, Xin Li, Long Zhong, Sanzhong Luo,* and Jin-Pei Cheng

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

luosz@iccas.ac.cn

Received January 14, 2010

ORGANIC LETTERS 2010 Vol. 12, No. 5 1096-1099

ABSTRACT

A unique binary chiral phosphoric acid $1a/MgF_2$ catalyst that enables effective catalysis of asymmetric Friedel—Crafts reactions of phenols with up to 82% yield and >99% ee is presented. A dramatic synergistic effect has been observed in the combinations of two types of acids, wherein a highly active binary-acid catalyst can be generated from two individually inert acids.

In the context of the extraordinary pace in exploring chiral acid catalysis, the development of new catalysts, particularly those with enhanced efficiency to address difficult substrates and transformations, remains a challenging task.¹ For example, although a number of chiral acid catalysts for the asymmetric Friedel–Crafts reaction of activated aromatics, such as indoles and pyrroles, have been reported,² the reactions with less active aromatic substrates (e.g., parent phenols) have only been explored with very limited success.³ One conceivable way to address this problem is to design chiral acids with sufficient acidity, since it is known that strong acids can promote this and similar types of Friedel–Crafts reactions.⁴ Previous efforts in this regard by

Yamamoto,⁵ Ishihara,⁶ and List⁷ have shown that chiral Brønsted acids with stronger acidity could indeed enable activations of less active substrates such as simple aldehydes, leading to asymmetric catalysis beyond the

^{(1) (}a) Acid Catalysis in Modern Organic Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Weinheim, Germany, 2008. (b) Akiyama, T. Chem. Rev. 2007, 107, 5744–5758. (c) Terada, M. Chem. Commun. 2008, 4097. (d) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.

⁽²⁾ For reviews, see: (a) Poulsen, T.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903. (b) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190. For recent examples with chiral Lewis acid catalysis, see: (c) Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem.—Eur. J. 2008, 14, 3630. (d) Liu, Y.; Shang, D.; Zhou, X.; Zhu, Y.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 180. For recent examples with Brønsted acid, see: (e) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 5565. (f) Kang, Q.; Zhang, X.-J.; You, S.-L. Chem.—Eur. J. 2008, 14, 3539. (g) Rowland, G. B.; Rowland, E. G.; Liang, Y.; Perman, J. A.; Antilla, J. C. Org. Lett. 2007, 9, 2609. (h) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008, 47, 4016.

⁽³⁾ For an example on reactions of 2-naphthol with nitrostyrenes, see: Liu, T.; Cui, H.; Chai, Q.; Long, J.; Li, B.; Wu, Y.; Ding, L.; Chen, Y. C. *Chem. Commun.* **2007**, 2228.

⁽⁴⁾ Olah, G. A.; Krishnamurit, R.; Prakash *Friedel-Crafts Alkylation in Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, UK, 1991; Vol. 3, 293.

reach of weak acids. Nevertheless, a new strategy and catalyst design to achieve asymmetric strong acid catalysis is still highly desirable.

In the present work, we propose a combinatorial approach for asymmetric strong acid catalysis by simply combining known chiral Brønsted acids with classical Lewis acids. In this binary-acid strategy, enhanced acidity of either the Brønsted acid, Lewis acid, or both would be expected according to Yamamoto's combined acid principles.⁸ Most importantly, the resulting multiacidic centers may induce a synergistic effect for catalysis by judicious selection of each acid component and their combinations (Figure 1).⁹ Our

current study indicates that such binary-acid catalysis is indeed possible and a successful example combining chiral phosphoric acid and MgF_2 is presented herein.

Preliminary studies started with the examination of binary-acids catalyzed addition of 3-methoxyphenol 2a to the β , γ -unsaturated α -ketoester **3a**, for which asymmetric catalysis has not been achieved.¹⁰ While no reactions were observed when weak Brønsted acids, such as thioureas, BINOL, and BINOL-derived phosphoric acids (e.g., 1a, Table 1, entry 2), were used, the joint use of **1a** and catalytic amounts of Mg(OTf)₂, which is a quite active catalyst itself (Table 1, entry 1), led to chemo- and regioselective formation of adduct 4a with 70% yield and 88% ee (Table 1, entry 3). It is noted that the reaction could not proceed with phosphoric acid salts of 1a such as sodium salt 1e and pyridinium salt 1f (Table 1, entries 7 and 8), suggesting that the use of free acid is essential for effective catalysis and that the role played by the acid may be very likely beyond simply as chiral counteran-ions¹¹ or phosphate ligands¹² as previously observed in phosphoric acid-metal combined catalysis.¹³

$\begin{array}{c} \begin{array}{c} \text{Ar} \\ \text{B} \\ \text{C} \\ C$					
entrv	Brønsted acid	Lewis acid	vield (%) ^b	ee (%) ^c	
1	Diplicited dela		<u>j 1014</u> ()(0)	00 (70)	
1	none	$Mg(OTI)_2$	trace/90%		
2 9	1a	Mar(OTf)	no reaction	00	
3 4	1a 1b	$Mg(OTI)_2$ Mg(OTf)_	10 02	70	
5	10 1c	$Mg(OTf)_2$	32 40	38	
6	1d	$Mg(OTf)_2$	trace	00	
7	1e	$Mg(OTf)_{0}$	no reaction		
8	10 1f	$Mg(OTf)_2$	no reaction		
9	 1a	$Mg(ClO_4)_2$	71	88	
10	1a	MgSO₄	74	90	
11	1a	MgF ₂	79	95	
12	1a	MgI_2	75	80	
13	1a	$Cu(OTf)_2$	78	30	
14	1a	$InBr_3$	72	46	
15	1a	$Zn(OTf)_2$	75	70	
16	1a	$Bi(OTf)_3$	95	40	
17	1a	$Ni(OTf)_2$	68	86	
18	none	MgF_2	no reaction ^h		
19^d	1a	MgF_2	61	92	
20^e	1a	MgF_2	40	91	
21^{f}	1a	MgF_2	21	90	

^{*a*} General conditions: **2a** (0.12 mmol), **3a** (0.10 mmol), **1** (20 mol %), Lewis acid (5 mol %), and 4 Å MS (40 mg) at -70 °C in CH₂Cl₂, 36 h; for entries 13–17, 24 h. ^{*b*} Isolated yield. ^{*c*} Enantioselectivities were determined by HPLC analysis. ^{*d*} **1a** (15 mol %). ^{*e*} **1a** (10 mol %). ^{*f*} **1a** (5 mol %). ^{*g*} Yield at rt. ^{*h*} Both at rt and -70 °C.

A quick survey of different phosphoric acids such as 1a-d was then followed and the best results were obtained in the presence of 1a (Table 1, entries 3-6), whereas others resulted in either low activity or poor enantioselectivity. With phosphoric acid 1a, the use of different Lewis acids was next

^{(5) (}a) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626. (b) Hasegawa, A.; Naganawa, Y.; Fushimi, M.; Ishihara, K.; Yamamoto, H. Org. Lett. 2006, 8, 3175.

⁽⁶⁾ Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858.

⁽⁷⁾ García-García, P.; Lay, F.; García-García, P.; Rabalakos, C.; List, B. Angew. Chem., Int. Ed. 2009, 48, 4363.

⁽⁸⁾ Yamamoto, H.; Futatsugi, K. *Angew. Chem., Int. Ed.* 2005, 44, 1924.
(9) The combination of chiral Brønsted acid and boron Lewis acid has

recently been reported as a new Brønsted acid of singular structure: (a) Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. *Chem. Commun.* **2009**, 5460. (b) Hu, G.; Huang, L.; Huang, R.; Wulff, W. D. *J. Am. Chem. Soc.* **2009**, *131*, 15615.

⁽¹⁰⁾ For examples with 1,3-dimethoxybenzene, see: (a) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. *Angew. Chem., Int. Ed.* **2001**, 40, 160. (b) Lingen, H. L.; Zhuang, W.; Hansen, T.; Rutjes, P. J. T.; Jørgensen, K. A. *Org. Biomol. Chem.* **2003**, *1*, 1953.

⁽¹¹⁾ For examples, see: (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. **2007**, *129*, 11336. (b) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science **2007**, *317*, 496. (c) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. **2007**, *46*, 6903. (d) Li, C.; Wang, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc. **2008**, *130*, 14450.

⁽¹²⁾ For examples, see: (a) Suzuki, S.; Furono, H.; Yokoyama, Y.; Inanaga, J. *Tetrahedron: Asymmetry* **2006**, *17*, 504. (b) Yue, T.; Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J. J. Org. Chem. **2009**, *74*, 8396. (c) After our original submission, Xia and Huang reported the enantioselective addition of indole nucleophiles to unsaturated α-hydroxy ketones using a chiral phosphoric acid—iron(III) system. The phosphoric acid is also a phosphate ligand for the metal according to this study: Yang, L.; Zhu, Q.; Guo, S.; Qian, B.; Xia, C.; Huang, H. Chem.—Eur. J. **2010**, *16*, 1638.

⁽¹³⁾ For other recent examples using the combined chiral Brønsted acid and transition metal, see: (a) Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782. (b) Xu, X.; Zhou, J.; Yang, L.; Hu, W. Chem. Commun. 2008, 6564. (c) Guo, Z.; Shi, T.; Jiang, J.; Yang, L.; Hu, W. Org. Biomol. Chem. 2009, 5028. (d) Tetrade, M.; Toda, Y. J. Am. Chem. Soc. 2009, 131, 6354. (e) Lu, Y.; Johnstone, T. C.; Arndtsen, B. A. J. Am. Chem. Soc. 2009, 131, 11284.

probed and some selected results were listed in Table 1. In all the cases, the reactions proceeded very well in the presence of binary-acids while the activity and enantioselectivity varied significantly with different Lewis acid such as Mg^{II}, Cu^{II}, In^{III}, Zn^{II}, Bi^{III}, and Ni^{II} salts (Table 1, entries 9-17). To our delight, Group IIA metal Mg^{II} Lewis acids generally exhibited superior performance in terms of both activity and stereoselectivity. Among a myriad of Mg^{II} salts examined, MgF₂ was identified to be the optimal Lewis acid, giving 79% yield and 95% ee (Table 1, entry 11). This result is quite beyond our expectation since there has been no report on the use of MgF2 as homogeneous Lewis acid in asymmetric catalysis.^{14,15} More surprisingly, MgF₂¹⁶ itself turned out to be an inert catalyst for the reaction in the absence of chiral phosphoric acid 1a even at rt (Table 1, entry 18). These intriguing findings further prove the synergistic function of chiral Brønsted acids and Lewis acids, causing a concertedly activated complex formation for effective catalysis. The impact of the ratio of two acids was also examined. While the enantioselectivity was maintained at a similar level by increasing the ratio of $1a/MgF_2$ from 1:1 to 4:1, the activity was considerably improved with higher ratio (Table 1, entries 19-21). Further increasing the ratio did not lead to much improvement. An optimal 4:1 ratio of 1a/MgF2 was used in our subsequent experiments.17

With optimal conditions established, the scope of an asymmetric binary-acid-catalyzed enantioselective Friedel– Crafts alkylation reaction was next explored with $1a/MgF_2$ in dichloromethane at -70 °C. The results are presented in Table 2. A variety of β , γ -unsaturated- α -ketoesters can be applied in the reactions with free phenols 2a and 2b to give the desired Friedel–Crafts alkylation products 4a-j in good yields and with up to 99% ee (Table 2). Interestingly, no reaction was observed when 1,3-dimethoxybenzene was used.

Not only free phenols but also the asymmetric binaryacid catalytic system **1a**/MgF₂ could also be successfully applied in similar Friedel–Crafts reactions of indoles. Remarkably, 0.5 mol % of MgF₂ suffices for effective catalysis and the reactions work well with a range of indole derivatives and β , γ -unsaturated- α -ketoesters, affording the desired 1,4-addition adducts in good yields with 82–94% ee (Table 3).¹⁸ Previously, simple phosphoric acids have been shown to be unable to catalyze similar reactions and therefore a specially designed *N*-triflylphosphoramide acid with strong **Table 2.** Friedel–Crafts Alkylation Reactions of **2a**,**b** and β , γ -Unsaturated α -Ketoesters^{*a*}

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					CO ₂ R ₂	
entry	product	R	R_1	\mathbf{R}_2	yield $(\%)^b$	ee (%) c,d
1	4a	Me	Ph	Me	79	95
2	4b	Et	Ph	Me	80	90
3	4c	Me	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	Me	70	96
4	4d	\mathbf{Et}	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	Me	65	95
5	4e	Me	$3,4$ - $Cl_2C_6H_3$	Me	81	>99
6	4f	Me	$3,4$ - $Cl_2C_6H_3$	\mathbf{Et}	76	86
7	4g	Me	$2\text{-FC}_6\text{H}_4$	Me	82	97
8	4h	Me	$4\text{-}MeC_6H_4$	Me	57	82
9	4i	Me	$3-MeC_6H_4$	Me	75	84
10	4j	Me	$4\text{-PhC}_6\mathrm{H}_4$	Me	59	79

^{*a*} General conditions: **2a** (0.12 mmol), **3a** (0.10 mmol), **1** (20 mol %), MgF₂ (5 mol %) and 4 Å MS (40 mg) at -70 °C in CH₂Cl₂. ^{*b*} Isolated yield. ^{*c*} Enantioselectivities were determined by HPLC analysis. ^{*d*} The absolute configurations were assigned by analogy with the known indole adducts.^{10a,20}

Table 3. Friedel-Crafts Alkylation Reactions of I	Different
Indoles $2\mathbf{c} - \mathbf{e}$ and β, γ -Unsaturated α -Ketoesters ^{<i>a</i>}	

R	2c-e	0 <u>M</u> CO ₂ M	1a (2 mol %) R.√ MgF ₂ (0.5 mol %) eCH ₂ Cl ₂ (0.05 M) 4Å MS, -70 °C 24 h		⊃₂Me
entry	product	R	R_1	yield $(\%)^b$	ee $(\%)^c$
1	4k	Н	Ph	82	90 $(\mathbf{R})^d$
2	4l	Η	$2\text{-FC}_6\text{H}_4$	87	94
3	4m	Η	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	82	83
4	4n	Η	3,4-ClC ₆ H ₄	80	88
5	4o	Η	$4 \text{-} \text{MeC}_6 \text{H}_4$	78	87
6	4p	Η	$4\text{-PhC}_6\text{H}_4$	81	82
7	4q	5-MeO	Ph	90	92
8^e	4q	5-MeO	Ph	81	84
9	$4\mathbf{r}$	6-Cl	Ph	83	92
10 ^f	4s	6-Cl	$3,4\text{-}Cl_2C_6H_4$	64	91

^{*a*} General conditions: **2c** (0.10 mmol), **3a** (0.12 mmol), **1a** (2 mol %), MgF₂ (0.5 mol %) and 4 Å MS (40 mg) at -70 °C in CH₂Cl₂. ^{*b*} Isolated yield. ^{*c*} Enantioselectivities were determined by HPLC analysis. ^{*d*} The absolute configuration was determined by comparing the optical rotation with that reported in ref 10a. ^{*e*} MgF₂ was not used. ^{*j*} For 72 h.

acidity was required for such catalysis.¹⁹ From our studies, it was found that phosphoric acid **1a** was actually a viable catalyst for this reaction²⁰ (Table 3, entry 8) and the combination of **1a** with MgF₂ could further improve the catalysis with better activity and stereocontrol (Table 3, entry

⁽¹⁴⁾ For a review on magnesium Lewis acid, see: Zhang, X.; Li, W. Chin. J. Org. Chem. 2003, 23, 1185.

⁽¹⁵⁾ For a review on metal fluoride complexes in asymmetric catalysis, see: Pagenkopf, B. L.; Carreira, E. M. *Chem.—Eur. J.* **1999**, *5*, 3437. For one recent example, see: Hamada, T.; Manabe, K.; Kobayashi, S. *Chem.—Eur. J.* **2006**, *12*, 1205.

⁽¹⁶⁾ Solubility of MgF_2 in CH_2Cl_2 was determined to be around 10 mg/ 100 mL at room temperature. Therefore, solubility would not be the major reason for inertness of MgF_2 (0.31 mg/2 mL of CH_2Cl_2) in the control reaction at rt. On the other hand, the binary-acid $1a/MgF_2$ is very soluble under the reaction conditions and homogeneous reactions were generally observed in our experiments.

⁽¹⁷⁾ The real active catalytic species remains unclear and awaits further study.

⁽¹⁸⁾ *N*-Methylindole has also been examined. Instead of the desired 1,4addition product, this reaction gave regioselectively 1,2-addition product. Further exploration along this line is underway.

⁽¹⁹⁾ Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed. 2008, 47, 593.

7 vs 8), thus highlighting again the beneficial features of this binary-acid catalytic system.

In summary, we have developed a combinatorial approach for chiral strong acid catalysis by simply combining the known chiral Brønsted acids with typical Lewis acids. A unique binary-acid $1a/MgF_2$ was identified via this approach and the catalyst was found to enable effective catalysis of asymmetric Friedel–Crafts reactions of phenols and indoles with good activity and high to excellent enantioselectivity. A dramatic synergistic effect has been observed in the combinations of two types of acids, demonstrating that a highly active binary-acid catalyst can be generated from two individually inert acids. This beneficial feature together with the modular and combinatorial flexibility promise wide application of such asymmetric binary-acid catalysis in many other strong acid-catalyzed reactions. A detailed mechanism study and further investigations in this field of catalysis are ongoing and will be reported in due course.

Acknowledgment. The project was supported by the Natural Science Foundation (NSFC 20632060 and 20972163) and MOST (2008CB617501, 2009ZX09501-018). J.L. and X.L. thank China Postdoctoral Science Foundation for support.

Supporting Information Available: Experimental procedures and spectral data for compound**4**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL1000928

⁽²⁰⁾ Compared with inertness in the reaction of phenol, the activity of phosphoric acid **1a** in this case may be a result of high reactivity of indoles. In a control reaction, 3-methoxyphenol **2a** and indole were treated with **3g** in one pot in the presence of **1a** (20 mol %)/MgF₂ (5 mol %). The reaction afforded the desired products **4g** and **4l** with 94% and 94% ee, respectively, almost the same as listed in Table 2 (entry 7) and Table 3 (entry 2), suggesting a common stereocontrol mode in these two reactions. In this instance, indole was consumed in less than 1 h, but there was only ca. 10% conversion for phenol **2a**.